Directly from Coursera DeepLearning.ai course.
pip install tensorflowjs
import numpy as np
import tensorflow as tf
print('\u2022 Using TensorFlow Version:', tf.__version__)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(units=1, input_shape=[1])
])
model.compile(optimizer='sgd', loss='mean_squared_error')
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
model.fit(xs, ys, epochs=500)
Exporting the model
import time
saved_model_path = "./{}.h5".format(int(time.time()))
model.save(saved_model_path)
Converting the model to JSON and weights bin files.
tensorflowjs_converter --input_format=keras {saved_model_path} ./